Polynomial Relations in the Centre of U q ( sl ( N ) )

نویسنده

  • Michel Bauer
چکیده

When the parameter of deformation q is a root of unity, the centre of Uq(sl(N)) contains, besides the usual q-deformed Casimirs, a set of new generators, which are basically the m-th powers of all the Cartan generators of Uq(sl(N)). All these central elements are however not independent. In this letter, generalising the well-known case of Uq(sl(2)), we explicitly write polynomial relations satisfied by the generators of the centre. Application to the parametrization of irreducible representations and to fusion rules are sketched.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level - one Highest Weight Representation of U q [ ̂ sl ( N | 1 ) ] and Bosonization of the Multi - component Super t − J Model

We study the level-one irreducible highest weight representations of the quantum affine superalgebra Uq[ ̂ sl(N |1)], and calculate their characters and supercharacters. We obtain bosonized q-vertex operators acting on the irreducible Uq[ ̂ sl(N |1)]-modules and derive the exchange relations satisfied by the vertex operators. We give the bosonization of the multi-component super t− J model by usi...

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Level - 0 action of U q ( c sl n ) on the q - deformed Fock spaces

On the level-1 Fock space modules of the algebra U q ( b sl n ) we de ne a level-0 action U 0 of the U 0 q ( b sl n ), and an action of an Abelian algebra of conserved Hamiltonians commuting with the U 0 . An irreducible decomposition of the Fock space with respect to the level-0 action is derived by constructing a base of the Fock space in terms of the Non-symmetric Macdonald Polynomials. 1 e-...

متن کامل

TOROIDAL ACTIONS ON LEVEL 1 MODULES OF U q ( b sl n ) :

Recently Varagnolo and Vasserot established that the q-deformed Fock spaces due to Hayashi, and Kashiwara, Miwa and Stern, admit actions of the quantum toroidal algebra U 0 q (sl n;tor ) (n 3) with the level (0; 1). In the present article we propose a more detailed proof of this fact then the one given by Varagnolo and Vasserot. The proof is based on certain non-trivial properties of Cherednik'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993